6,121 research outputs found

    Quark-lepton complementarity revisited

    Full text link
    We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result of a large lepton mixing angle ϑ13\vartheta_{13} from the T2K, MINOS and Double Chooz experiments. We find that there are still two QLC relations satisfied in P1, P4 and P6 parametrizations, whereas only one QLC relation holds in P2, P3, P5 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant forms of the QLC relations and check the resulting expressions with the experimental data. The results can be viewed as a check of the validity of the QLC relations, as well as a new perspective into the issue of seeking for the connection between quarks and leptons.Comment: 5 Latex pages, 2 tables. Final version for publication in PR

    Pricing of early-exercise Asian options under L\'evy processes based on Fourier cosine expansions

    Get PDF
    In this article, we propose a pricing method for Asian options with early-exercise features. It is based on a two-dimensional integration and a backward recursion of the Fourier coefficients, in which several numerical techniques, like Fourier cosine expansions, Clenshaw–Curtis quadrature and the Fast Fourier Transform (FFT) are employed. Rapid convergence of the pricing method is illustrated by an error analysis. Its performance is further demonstrated by various numerical examples, where we also show the power of an implementation on Graphics Processing Units (GPUs)

    Efficient two-step entanglement concentration for arbitrary W states

    Full text link
    We present two two-step practical entanglement concentration protocols (ECPs) for concentrating an arbitrary three-particle less-entangled W state into a maximally entangled W state assisted with single photons. The first protocol uses the linear optics and the second protocol adopts the cross-Kerr nonlinearity to perform the protocol. In the first protocol, based on the post-selection principle, three parties say Alice, Bob and Charlie in different distant locations can obtain the maximally entangled W state from the arbitrary less-entangled W state with a certain success probability. In the second protocol, it dose not require the parties to posses the sophisticated single-photon detectors and the concentrated photon pair can be retained after performing this protocol successfully. Moreover, the second protocol can be repeated to get a higher success probability. Both protocols may be useful in practical quantum information applications.Comment: 10 pages, 4 figure

    Branching ratios and CP asymmetries of BKη()B \to K \eta^{(\prime)} decays in the pQCD approach

    Full text link
    We calculate the branching ratios and CP violating asymmetries of the four B \to K \etap decays in the perturbative QCD (pQCD) factorization approach. Besides the full leading order contributions, the partial next-to-leading order (NLO) contributions from the QCD vertex corrections, the quark loops, and the chromo-magnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged branching ratios are Br(B+K+η)3.2×106Br(B^+ \to K^+ \eta) \approx 3.2 \times 10^{-6}, Br(B^\pm \to K^\pm \etar) \approx 51.0 \times 10^{-6}, Br(B0K0η)2.1×106Br(B^0 \to K^0 \eta) \approx 2.1 \times 10^{-6}, and Br(B^0 \to K^0 \etar) \approx 50.3 \times 10^{-6}. The NLO contributions can provide a 70% enhancement to the LO Br(B \to K \etar), but a 30% reduction to the LO Br(BKη)Br(B \to K \eta), which play the key role in understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating asymmetries, such as \acp^{dir} (K^0_S \etar) \sim 2.3% and \acp^{mix}(K^0_S \etar)\sim 63%, agree very well with currently available data. This means that the deviation \Delta S=\acp^{mix}(K^0_S \etar) - \sin{2\beta} in pQCD approach is also very small.Comment: 31 pages, 11 ps/eps figures, typos corrected. A little modificatio

    Parameter Estimation for Class a Modeled Ocean Ambient Noise

    Get PDF
    A Gaussian distribution is used by all traditional underwater acoustic signal processors, thus neglecting the impulsive property of ocean ambient noise in shallow waters. Undoubtedly, signal processors designed with a Gaussian model are sub-optimal in the presence of non-Gaussian noise. To solve this problem, firstly a quantile-quantile (Q-Q) plot of real data was analyzed, which further showed the necessity of investigating a non-Gaussian noise model. A Middleton Class A noise model considering impulsive noise was used to model non-Gaussian noise in shallow waters. After that, parameter estimation for the Class A model was carried out with the characteristic function. Lastly, the effectiveness of the method proposed in this paper was verified by using simulated data and real data

    Electron dephasing in homogeneous and inhomogeneous indium tin oxide thin films

    Full text link
    The electron dephasing processes in two-dimensional homogeneous and inhomogeneous indium tin oxide thin films have been investigated in a wide temperature range 0.3--90 K. We found that the small-energy-transfer electron-electron (ee-ee) scattering process dominated the dephasing from a few K to several tens K. At higher temperatures, a crossover to the large-energy-transfer ee-ee scattering process was observed. Below about 1--2 K, the dephasing time τφ\tau_\varphi revealed a very weak temperature dependence, which intriguingly scaled approximately with the inverse of the electron diffusion constant DD, i.e., τφ(T0.3K)1/D\tau_\varphi (T \approx 0.3 \, {\rm K}) \propto 1/D. Theoretical implications of our results are discussed. The reason why the electron-phonon relaxation rate is negligibly weak in this low-carrier-concentration material is presented.Comment: 10 pages, 7 figure

    Notes on Ghost Dark Energy

    Full text link
    We study a phenomenological dark energy model which is rooted in the Veneziano ghost of QCD. In this dark energy model, the energy density of dark energy is proportional to Hubble parameter and the proportional coefficient is of the order ΛQCD3\Lambda^3_{QCD}, where ΛQCD\Lambda_{QCD} is the mass scale of QCD. The universe has a de Sitter phase at late time and begins to accelerate at redshift around zacc0.6z_{acc}\sim0.6. We also fit this model and give the constraints on model parameters, with current observational data including SnIa, BAO, CMB, BBN and Hubble parameter data. We find that the squared sound speed of the dark energy is negative, which may cause an instability. We also study the cosmological evolution of the dark energy with interaction with cold dark matter.Comment: 20 pages,10 figures,Correct some typos and add new reference
    corecore